Surface Cracking in Layers Under Biaxial, Residual Compressive Stress

Author:

Ho S.,Hillman C.,Lange F. F.,Suo Z.

Abstract

Thin two‐phase, Al2O3/t‐Zr(3Y)O2 layers bounded by much thicker Zr(3Y)O2 layers were fabricated by co‐sintering powders. After cooling, cracks were observed along the center of the two‐phase, Al2O3/t‐Zr(3Y)O2 layers. Although the Al2O3/t‐Zr(3Y)O2 layers are under residual, biaxial compression far from the surface, tensile stresses, normal to the center line, exist at and near the surface. These highly localized tensile stresses can cause cracks to extend parallel to the layer, to a depth proportional to the layer thickness. A tunneling/edge cracking energy release rate function is developed for these cracks. It shows that for a given residual stress, crack extension will take place only when the layer thickness is greater than a critical value. A value of the critical thickness is computed and compared with an available experimental datum point. In addition, the behavior of the energy release rate function due to elastic mismatch is calculated via the finite element method (FEM). It is also shown how this solution for crack extension can be applied to explain cracking associated with other phenomena, e.g., joining, reaction couples, etc.

Publisher

Wiley

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3