Crack‐Wake Debonding and Toughness in Fiber‐ or Whisker‐Reinforced Brittle‐Matrix Composites

Author:

Nair Shanti V.

Abstract

Solutions are obtained for the mechanics of debonding in the crack wake in fiber‐ or whisker‐reinforced composites for the case where a finite shear traction exists at the fiber/matrix interface in the debonded zone. These solutions are then applied to derive expressions for the steady‐state toughness increases obtained in bonded composites wherein the toughness contribution is provided by crack‐wake fiber/matrix debonding and crack bridging. The solutions for an unbonded composite containing a frictional fiber/matrix interface can be obtained from the derived equations in the limit of the fiber/matrix interface toughness equal to zero. In this limit, the debond crack length reduces to the slip length and the expressions for the crack opening and the predicted toughness increase reduce to previously derived expressions for unbonded composites. The steady‐state toughness is found to depend sensitively on the interface toughness, the fiber fracture strength, and the shear tractions in the debonded zone including other material parameters, such as fiber radius and volume fraction and the moduli of the constituent phases. It is shown that in order to obtain finite toughness increases, the fiber/matrix interface toughness must be less than a critical value dependent on the fiber fracture strength, fiber radius and volume fraction, and fiber and matrix moduli. The predictions of the model are applied to published experimental results from a detailed and complete study of toughness increases in a bonded whisker‐reinforced composite.

Publisher

Wiley

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3