Interactive Effects of Anthropogenic Stressors on the Temporal Changes in the Size Spectrum of Lake Fish Communities

Author:

Marin Valentin1,Cucherousset Julien1,Grenouillet Gaël12

Affiliation:

1. Centre de Recherche Sur la Biodiversité et l'Environnement (CRBE) Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3) Toulouse France

2. Institut Universitaire de France Paris France

Abstract

ABSTRACTThe size spectrum represents a powerful approach for quantifying the effects of environmental changes from individuals to communities in aquatic ecosystems. However, our understanding of its temporal stability in freshwater ecosystems is still limited. In the present study, we used a size spectrum approach to investigate the responses of 126 lake fish communities to changes in the intensity of three common anthropogenic stressors (i.e., global warming, nutrient loading and biological invasions) in French natural lakes and reservoirs over an average 5‐year time period. Using a backward selection on a full model including all possible effects of stressors on the size spectrum slope, we demonstrated that (i) increasing summer temperature shifted fish abundance towards the largest size classes, resulting in a flatter size spectrum slope and (ii) nutrient loading and biological invasions were associated with a shift towards smaller size classes in natural lakes, while the opposite effect was observed in reservoirs. In addition, these two stressors interacted in determining changes in the size structure of fish communities, complicating what the size spectrum can reveal about changes in stressor intensity during monitoring programs. All predictors accounted for a limited part of the observed changes in size spectra, and further investigations are needed to fully apprehend the interplay between natural and human‐induced drivers of the temporal changes in size spectra in contrasting environmental conditions.

Funder

Office Français de la Biodiversité

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3