Yield prediction in spring barley from spectral reflectance and weather data using machine learning

Author:

Petersen Carsten T.1ORCID,Langgaard Mette Kramer2,Petersen Søren D.3

Affiliation:

1. Department of Plant and Environmental Sciences University of Copenhagen Thorvaldsensvej 40 1871 Frederiksberg C Denmark

2. SEGES Innovation P/S Agro Food Park 15 8200 Aarhus N Denmark

3. DTU Bioengineering – Department of Biotechnology and Biomedicine Søltofts Plads Building 221 2800 Kgs. Lyngby Denmark

Abstract

AbstractAccurate preharvest yield estimation is an important issue for agricultural planning purposes and precision farming. Machine learning (ML) based on readily obtained information on the cropping system, typically including spectral reflectance measurements, is an essential approach for achieving practical solutions. We tested in a 9‐year soil compaction experiment the accuracy of ML‐based yield predictions made up to 2 months before harvest from a Ratio Vegetation Index (RVI) and recordings of precipitation and reference evapotranspiration. The applied data set comprises 224 combinations of plots and years with measured grain yields in the range of 4.22–9.34 Mg/ha. The best ML model [i.e., with the smallest mean absolute error (MAE)] was selected automatically by the AutoML interface included in the R program package H2O. Its cross‐validated predictions made on June 30 more than 1 month before harvest showed an MAE of 0.38 Mg/ha when trained on all data from all years except the one under consideration. MAE increased to about 0.68 Mg/ha when determined 3 weeks earlier on June 10. MAE values in the range of 0.32–0.42 Mg/ha were obtained for predictions made on June 30 when based on data from at least six consecutive years; however, MAE showed no generally decreasing trend with the number of years. Yield estimations were robust towards a considerable soil variation observed within the experimental area due in part to the experimental treatments. The results show a potential of making yield predictions in barley 1–2 months before harvest, which, however, is not sufficiently early to support decisions on top‐dress N fertilization.

Funder

Danish Agricultural Agency

Publisher

Wiley

Subject

Pollution,Soil Science,Agronomy and Crop Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3