Applications of integrated response surface methodology statistic techniques and artificial neural network‐based machine learning to optimize residual chlorine production and energy consumption

Author:

Yimam Solomon Ali1,Kang Joon Wun1,Kassahun Shimelis Kebede1ORCID

Affiliation:

1. School of Chemical and Bio Engineering, Addis Ababa Institute of Technology Addis Ababa University Addis Ababa Ethiopia

Abstract

AbstractA multifactor interaction study was performed using the combined response surface methodology and an artificial neural network on the operational parameters and their influence on residual chlorine production. The operating variables, sodium chloride concentration, electrical potential, electrolysis time, and electrode gap, were evaluated over the response, residual chlorine and energy consumption. The results indicated that the optimum value for residual chlorine was 2450 mg/L achieved at an electrical potential of 8.8 V for 25 min in the presence of 25 g/L of sodium chloride and an electrode distance of 1 cm, and the optimum corresponding energy consumption was measured at 21.76 kWh/L. The study reveals that electric potential, sodium chloride concentration, and electrolysis time positively influence residual chlorine production. ANN models showed superior prediction ability compared with RSM models. This suggests electrolysis can be used for active chlorine production from saline solutions, potentially for industrial applications and water disinfection.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3