Estimating Optimal Individualized Treatment Rules with Multistate Processes

Author:

Bakoyannis Giorgos1ORCID

Affiliation:

1. Department of Biostatistics and Health Data Science, Indiana University , Indianapolis, Indiana , USA

Abstract

Abstract Multistate process data are common in studies of chronic diseases such as cancer. These data are ideal for precision medicine purposes as they can be leveraged to improve more refined health outcomes, compared to standard survival outcomes, as well as incorporate patient preferences regarding quantity versus quality of life. However, there are currently no methods for the estimation of optimal individualized treatment rules with such data. In this paper, we propose a nonparametric outcome weighted learning approach for this problem in randomized clinical trial settings. The theoretical properties of the proposed methods, including Fisher consistency and asymptotic normality of the estimated expected outcome under the estimated optimal individualized treatment rule, are rigorously established. A consistent closed-form variance estimator is provided and methodology for the calculation of simultaneous confidence intervals is proposed. Simulation studies show that the proposed methodology and inference procedures work well even with small-sample sizes and high rates of right censoring. The methodology is illustrated using data from a randomized clinical trial on the treatment of metastatic squamous-cell carcinoma of the head and neck.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3