Deep learning‐based reconstruction for canine brain magnetic resonance imaging could improve image quality while reducing scan time

Author:

Choi Hyejoon1,Lee Sang‐Kwon1ORCID,Choi Hojung2,Lee Youngwon2ORCID,Lee Kija1ORCID

Affiliation:

1. College of Veterinary Medicine Kyungpook National University Daegu Republic of Korea

2. College of Veterinary Medicine College of Veterinary Medicine Chungnam National University Daejeon Republic of Korea

Abstract

AbstractOptimal magnetic resonance imaging (MRI) quality and shorter scan time are challenging to achieve in veterinary practices. Recently, deep learning‐based reconstruction (DLR) has been proposed for ideal image quality. We hypothesized that DLR‐based MRI will improve brain imaging quality and reduce scan time. This prospective, methods comparison study compared the MR image denoising performances of DLR and conventional methods, with the aim of reducing scan time and improving canine brain image quality. Transverse T2‐weighted and fluid‐attenuated inversion recovery (FLAIR) sequences of the brain were performed in 12 clinically healthy beagle dogs. Different numbers of excitations (NEX) were used to obtain the image groups NEX4, NEX2, and NEX1. DLR was applied to NEX2 and NEX1 to obtain NEX2DL and NEX1DL. The scan times were recorded, signal‐to‐noise ratio (SNR) and contrast‐to‐noise ratio (CNR) were calculated for quantitative analysis. Five blinded veterinarians assessed the overall quality, contrast, and perceived SNR on four‐point Likert scales. Quantitative and qualitative values were compared among the five groups. Compared with NEX4, NEX2 and NEX1 reduced scan time by 50% and 75%, respectively. The mean SNR and CNR of NEX2DL and NEX1DL were significantly superior to those of NEX4, NEX2, and NEX1 (P < 0.05). In all image quality indices, DLR‐applied images for both T2‐weighted and FLAIR images were significantly higher than NEX4 and NEX2DL had significantly better quality than NEX1DL for FLAIR (P < 0.05). Findings indicated that DLR reduced scan time and improved image quality compared with conventional MRI images in a sample of clinically healthy beagles.

Publisher

Wiley

Subject

General Veterinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3