Hypoxia stabilizes the H2O2‐producing oxidase Nox4 in cardiomyocytes via suppressing autophagy‐related lysosomal degradation

Author:

Matsunaga Shogo1,Kohda Akira1,Kamakura Sachiko1,Hayase Junya1,Miyano Kei1,Shiose Akira2,Sumimoto Hideki1ORCID

Affiliation:

1. Department of Biochemistry Kyushu University Graduate School of Medical Sciences Fukuoka Japan

2. Department of Cardiovascular Surgery Kyushu University Graduate School of Medical Sciences Fukuoka Japan

Abstract

AbstractThe hydrogen peroxide (H2O2)‐producing NADPH oxidase Nox4, forming a heterodimer with p22phox, is expressed in a variety of cells including those in the heart to mediate adaptive responses to cellular stresses such as hypoxia. Since Nox4 is constitutively active, H2O2 production is controlled by its protein abundance. Hypoxia‐induced Nox4 expression is observed in various types of cells and generally thought to be regulated at the transcriptional level. Here we show that hypoxia upregulates the Nox4 protein level and Nox4‐catalyzed H2O2 production without increasing the Nox4 mRNA in rat H9c2 cardiomyocytes. In these cells, the Nox4 protein is stabilized under hypoxic conditions in a manner dependent on the presence of p22phox. Cell treatment with the proteasome inhibitor MG132 results in a marked decrease of the Nox4 protein under both normoxic and hypoxic conditions, indicating that the proteasome pathway does not play a major role in Nox4 degradation. The decrease is partially restored by the autophagy inhibitor 3‐methyladenine. Furthermore, the Nox4 protein level is upregulated by the lysosome inhibitors bafilomycin A1 and chloroquine. Thus, in cardiomyocytes, Nox4 appears to be degraded via an autophagy‐related pathway, and its suppression by hypoxia likely stabilizes Nox4, leading to upregulation of Nox4‐catalyzed H2O2 production.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Cell Biology,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3