Affiliation:
1. Institute for Vascular Signalling, Centre for Molecular Medicine Goethe University Frankfurt am Main Germany
2. Partner Site RheinMain German Center for Cardiovascular Research (DZHK) Frankfurt am Main Germany
Abstract
ABSTRACTNitric oxide (NO) generated by the endothelial NO synthase (eNOS) plays an essential role in the maintenance of vascular homeostasis and the prevention of vascular inflammation. There are a myriad of mechanisms that regulate the activity of the enzyme that may prove to represent interesting therapeutic opportunities. In this regard, the kinases that phosphorylate the enzyme and regulate its activity in situations linked to vascular disease seem to be particularly promising. Although the actions of NO were initially linked mainly to the activation of the guanylyl cyclase and the generation of cyclic GMP in vascular smooth muscle cells and platelets, it is now clear that NO elicits the majority of its actions via its ability to modify redox‐activated cysteine residues in a process referred to as S‐nitrosylation. The more wide spread use of mass spectrometry to detect S‐nitrosylated proteins has helped to identify just how large the NO sphere of influence is and just how many cellular processes are affected. It may be an old target, but the sheer impact of eNOS on vascular health really justifies a revaluation of therapeutic options to maintain and protect its activity in situations associated with a high risk of developing cardiovascular disease.
Funder
Deutsche Forschungsgemeinschaft
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献