Real‐time prediction and ponding process early warning method at urban flood points based on different deep learning methods

Author:

Zhou Yihong1,Wu Zening1,Jiang Mengmeng1,Xu Hongshi1,Yan Denghua1,Wang Huiliang1ORCID,He Chentao1,Zhang Xiangyang1

Affiliation:

1. College of Water Conservancy and Transportation, Zhengzhou University Zhengzhou Henan People's Republic of China

Abstract

AbstractAccurate prediction of urban floods is regarded as one of the critical means to prevent urban floods and reduce the losses caused by floods. In this study, a refined prediction and early warning method system for urban flood and waterlogging processes based on deep learning methods is proposed. The spatial autocorrelation of rain and ponding points is analyzed by Moran's I (a common used statistic for spatial autocorrelation). For each ponding point, the relationship model between the rainfall process and ponding process is constructed based on different deep learning methods, and the results are analyzed and verified by mean absolute error (MAE), root mean square error (RMSE), Nash efficiency coefficient (NSE) and correlation coefficient (CC). The results show that the gradient boosting decision tree algorithm has the highest accuracy and efficiency (with a 0.001 m RMSE of the predicted and measured ponding depth) for ponding process prediction and is regarded as the most suitable method for ponding process prediction. Finally, the real‐time prediction and early warning of urban floods and waterlogging processes driven by rainfall forecast data are realized, and the results are verified by the measured data. The research results can provide theoretical support for urban flood prevention and control.

Funder

China Postdoctoral Science Foundation

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Water Science and Technology,Safety, Risk, Reliability and Quality,Geography, Planning and Development,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3