Transcriptome analysis of turbot (Scophthalmus maximus) head kidney and liver reveals immune mechanism in response to Vibrio anguillarum infection

Author:

Song Yuting12,Dong Xianzhi3,Hu Guobin12ORCID

Affiliation:

1. College of Marine Life Sciences Ocean University of China Qingdao China

2. Institute of Evolution & Marine Biodiversity Ocean University of China Qingdao China

3. Institute of Biophysis Chinese Academy of Sciences Beijing China

Abstract

AbstractThe diseases triggered by Vibrio anguillarum infection have created huge economic losses to the turbot (Scophthalmus maximus) farming industry. However, the immune mechanism of turbot to V. anguillarum infection has not been deeply investigated. To better understand the immune response of turbot to V. anguillarum infection, transcriptome analysis of the head kidney and liver of turbot was performed. A total of 15,948 and 11,494 differentially expressed genes (DEGs) were obtained from the turbot head kidney and liver, respectively. Transcriptome analysis revealed that the head kidney and liver of turbot have some differences in the gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the DEGs for the different functions of these two organs. Although there are many uncertain factors in this immune process, such as the occurrence of alternative splicing (AS) events and the differences in the protein structure of the DEGs, the NFκB signalling pathway, MKK‐dependent AP‐1 activation, JAK‐STAT signalling pathway, the signal transmission of MHC Ⅰ and a series of DEGs including HSP90 driving NLRP3 to produce inflammatory factors (IL‐1β, IL‐8, TNFα, etc.) were possible important immune response pathways for turbot to V. anguillarum infection. Overall, our research has conducted a preliminary exploration of the immune mechanism of turbot in response to V. anguillarum infection.

Funder

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Shandong Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3