Cuproptosis: Mechanisms, biological significance, and advances in disease treatment—A systematic review

Author:

Pan Chengliang1ORCID,Ji Zhilin1,Wang Qingxuan1,Zhang Zhao1,Wang Zhenchuan1,Li Chen1,Lu Shan1,Ge Pengfei1ORCID

Affiliation:

1. Department of Neurosurgery First Hospital of Jilin University Changchun P.R. China

Abstract

AbstractBackgroundCopper is an essential trace element for biological systems, as it plays a critical role in the activity of various enzymes and metabolic processes. However, the dysregulation of copper homeostasis is closely associated with the onset and progression of numerous diseases. In recent years, copper‐induced cell death, a novel form of cellular demise, has garnered significant attention. This process is characterized by the abnormal accumulation of intracellular copper ions, leading to cellular dysfunction and eventual cell death. Copper toxicity occurs through the interaction of copper with acylated enzymes in the tricarboxylic acid (TCA) cycle. This interaction results in subsequent protein aggregation, causing proteotoxic stress and ultimately resulting in cell death. Despite the promise of these findings, the detailed mechanisms and broader implications of cuproptosis remain underexplored. Therefore, our study aimed to investigate the role of copper in cell death and autophagy, focusing on the molecular mechanisms of cuproptosis. We also aimed to discuss recent advancements in copper‐related research across various diseases and tumors, providing insights for future studies and potential therapeutic applications.Main BodyThis review delves into the biological significance of copper metabolism and the molecular mechanisms underlying copper‐induced cell death. Furthermore, we discuss the role of copper toxicity in the pathogenesis of various diseases, emphasizing recent advancements in the field of oncology. Additionally, we explore the therapeutic potential of targeting copper toxicity.ConclusionThe study highlights the need for further research to explore alternative pathways of copper‐induced cell death, detailed mechanisms of cuproptosis, and biomarkers for copper poisoning. Future research should focus on exploring the molecular mechanisms of cuproptosis, developing new therapeutic strategies, and verifying their safety and efficacy in clinical trials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3