Inoculated biocrust cover and functions diverged over a gradient of soil textures and water availability

Author:

Young Kristina E.1ORCID,Reed Sasha C.2ORCID,Morton Michael3,Bowker Matthew A.3ORCID

Affiliation:

1. USDA‐ARS Jornada Experimental Range Las Cruces NM 88003 U.S.A.

2. U.S. Geological Survey Southwest Biological Science Center 2290 S. West Resource Boulevard Moab UT 84532 U.S.A.

3. School of Forestry Northern Arizona University 200 E. Pine Knoll Drive Flagstaff AZ 86011 U.S.A.

Abstract

Restoring biological crust (biocrust) in disturbed drylands is challenging due to the difficult environmental conditions, such as limited soil moisture, low soil nutrients, and extreme temperatures, that impede growth. Understanding how the key components of biocrust—mosses, lichens, and cyanobacteria—react to different environmental factors informs the optimal timing, locations, and species composition for biocrust reintroduction, thereby increasing the likelihood of establishment. Here, we inoculated soils with a diverse range of biocrust organisms, analogous to seeding an area with diverse vascular plant seeds, and varied environmental conditions to observe how these changes influenced the development and functions of reintroduced biocrust. We found that by manipulating soil texture and time spent wet, we can change the proportional cover of biocrust within a restoration‐like setting. Specifically, we found that 4 months after inoculation, finer textured soils that received more water become dominated by moss cover, while coarser textured soils with less water remained dominated by cyanobacteria cover, and the interactions between texture and time spent wet strongly influenced cover. We found biocrust morphological group cover had a small, but detectable, effect on ecosystem functions (soil stability and nitrogenase activity, a proxy for nitrogen fixation), but that environmental conditions had a stronger impact on the functions we measured. Manipulative experiments in controlled environments, like this one, can help elucidate the mechanisms underlying the establishment rate and patterns of biocrusts post‐inoculation, and inform implementation of inoculations in the field.

Funder

U.S. Department of Energy

U.S. Department of Defense

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3