Identification of a Prunus MAX1 homolog as a unique strigol synthase

Author:

Wu Sheng1ORCID,Zhou Anqi1ORCID,Hiugano Kozue23,Yoda Akiyoshi24,Xie Xiaonan24ORCID,Yamane Kenji34,Miura Kenji5ORCID,Nomura Takahito24ORCID,Li Yanran1ORCID

Affiliation:

1. Department of Chemical and Environmental Engineering University of California Riverside CA 92521 USA

2. Center for Bioscience Research and Education Utsunomiya University Tochigi 321‐8505 Japan

3. School of Agriculture Utsunomiya University Tochigi 321‐8505 Japan

4. United Graduate School of Agricultural Science Tokyo University of Agriculture and Technology Tokyo 183‐8509 Japan

5. Graduate School of Life and Environmental Sciences University of Tsukuba Tsukuba 305‐8572 Japan

Abstract

Summary Strigol is the first identified and one of the most important strigolactones (SLs), but the biosynthetic pathway remains elusive. We functionally identified a strigol synthase (cytochrome P450 711A enzyme) in the Prunus genus through rapid gene screening in a set of SL‐producing microbial consortia, and confirmed its unique catalytic activity (catalyzing multistep oxidation) through substrate feeding experiments and mutant analysis. We also reconstructed the biosynthetic pathway of strigol in Nicotiana benthamiana and reported the total biosynthesis of strigol in the Escherichia coli‐yeast consortium, from the simple sugar xylose, which paves the way for large‐scale production of strigol. As proof of concept, strigol and orobanchol were detected in Prunus persica root extrudes. This demonstrated a successful prediction of metabolites produced in plants through gene function identification, highlighting the importance of deciphering the sequence–function correlation of plant biosynthetic enzymes to more accurately predicate plant metabolites without metabolic analysis. This finding revealed the evolutionary and functional diversity of CYP711A (MAX1) in SL biosynthesis, which can synthesize different stereo‐configurations of SLs (strigol‐ or orobanchol‐type). This work again emphasizes the importance of microbial bioproduction platform as an efficient and handy tool to functionally identify plant metabolism.

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3