Predictive growth kinetic parameters and modelled probabilities of deoxynivalenol production by Fusarium graminearum on wheat during simulated storing conditions

Author:

Pei Penggang12,Xiong Ke13ORCID,Wang Xiaoyi14ORCID,Sun Baoguo12,Zhao Zhiyao14,Zhang Xin14,Yu Jiabin34

Affiliation:

1. Beijing Engineering and Technology Research Center of Food Additives Beijing Technology & Business University (BTBU) Beijing China

2. Beijing Innovation Centre of Food Nutrition and Human Beijing Technology & Business University (BTBU) Beijing China

3. Beijing Laboratory for Food Quality and Safety Beijing Technology & Business University (BTBU) Beijing China

4. College of Artificial Intelligence Beijing Technology & Business University (BTBU) Beijing China

Abstract

Abstract Aims Mathematical models were employed to predict the growth kinetic parameters of Fusarium graminearum and the accumulation of deoxynivalenol (DON) during wheat storage as a function of different moisture contents (MCs) and temperatures. Methods and results The colony counting method was used to quantify F. graminearum growth under different environmental conditions, and kinetic and probability models were developed to describe the effect of different MCs and temperatures on fungal growth and DON production during wheat storage. Among the employed secondary models (Arrhenius-Davey, Gibson and Cardinal), the general polynomial best predicted the fungal growth rate under varying temperature and MC during wheat storage. According to the logistic model, DON contamination was correctly predicted in 96.5% of cases. Conclusions The maximum growth rate of fungi was 0.4889 ± 0.092 Log CFU g−1 day−1 at 25°C and 30% moisture according to the polynomial model. At below 17°C and ≤15% moisture, no fungal growth was observed. The probability model of toxin production showed no toxin production at less than 15% moisture (aw ≤0.76) and below 15°C. Significance and impact of the study This is the first application of a probability model of DON production during wheat storage, providing a reference for preventing fungal growth and mycotoxin accumulation by F. graminearum during wheat storage and guaranteeing food product safety.

Funder

National Key RD Program of China

Scientific and Technological Innovation Service Capability Construction Project

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3