Optimal policies for nutrition administration to very low birth weight infants

Author:

Sengul Orgut Irem1ORCID,Falciglia Gustave H.23,Smilowitz Karen4

Affiliation:

1. Information Systems, Statistics and Management Science Department, Culverhouse College of Business The University of Alabama, Tuscaloosa Alabama USA

2. Department of Pediatrics, Feinberg School of Medicine Northwestern University Chicago Illinois USA

3. Ann & Robert H. Lurie Children's Hospital of Chicago Chicago Illinois USA

4. Industrial Engineering and Management Sciences, McCormick School of Engineering and Applied Science, & Operations, Kellogg School of Management Northwestern University Evanston Illinois USA

Abstract

AbstractVery low birth weight (VLBW) infants (birth weight 1500 grams) are at risk of postnatal growth restriction. Understanding how nutrition is associated with growth and how these associations vary based on infant characteristics and comorbidities is important to reduce postnatal growth restriction. We propose a three‐step analytical framework: (i) We use unsupervised Clustering techniques to identify subgroups within a cohort of VLBW infants based on infant characteristics, diagnoses, and treatments. (ii) For each cluster, we use Multilevel Modeling to explore the associations between calorie or protein intake and growth velocity (GV) for varying time windows. (iii) We build Mixed‐Integer Programming Models to achieve simple rule‐based policies that physicians can use to classify infants into one of the identified subgroups. We use electronic health records from VLBW infants at Lurie Children's Hospital in Chicago, IL, born between 2011 and 2014. We find that clustering separates infants into two clusters, with Cluster 1 having smaller infants with more comorbidities than Cluster 2. Initial clustering on only sex and birth weight provides results similar to clustering on later‐life diagnoses and treatments. Multilevel models with Clustering provide better model fit than models without clustering. For Cluster 1, there is a significant association between GV and protein but not calories. For Cluster 2, both protein and calories are individually associated with growth. We develop accurate and sparse scoring systems to help clinicians identify infants at higher risk of growth restriction and consider nutrition regimens accordingly.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3