N6‐methyladenosine‐modified FAM111A‐DT promotes hepatocellular carcinoma growth via epigenetically activating FAM111A

Author:

Pu Jian1,Xu Zuoming1,Huang Youguan2,Nian Jiahui2,Yang Meng2,Fang Quan2,Wei Qing2,Huang Zihua2,Liu Guoman2,Wang Jianchu1,Wu Xianjian2,Wei Huamei3ORCID

Affiliation:

1. Department of Hepatobiliary Surgery Affiliated Hospital of Youjiang Medical University for Nationalities Baise China

2. Graduate College of Youjiang Medical University for Nationalities Baise China

3. Department of Pathology Affiliated Hospital of Youjiang Medical University for Nationalities Baise China

Abstract

AbstractAs an epitranscriptomic modulation manner, N6‐methyladenosine (m6A) modification plays important roles in various diseases, including hepatocellular carcinoma (HCC). m6A modification affects the fate of RNAs. The potential contributions of m6A to the functions of RNA still need further investigation. In this study, we identified long noncoding RNA FAM111A‐DT as an m6A‐modified RNA and confirmed three m6A sites on FAM111A‐DT. The m6A modification level of FAM111A‐DT was increased in HCC tissues and cell lines, and increased m6A level was correlated with poor survival of HCC patients. m6A modification increased the stability of FAM111A‐DT transcript, whose expression level showed similar clinical relevance to that of the m6A level of FAM111A‐DT. Functional assays found that only m6A‐modified FAM111A‐DT promoted HCC cellular proliferation, DNA replication, and HCC tumor growth. Mutation of m6A sites on FAM111A‐DT abolished the roles of FAM111A‐DT. Mechanistic investigations found that m6A‐modified FAM111A‐DT bound to FAM111A promoter and also interacted with m6A reader YTHDC1, which further bound and recruited histone demethylase KDM3B to FAM111A promoter, leading to the reduction of the repressive histone mark H3K9me2 and transcriptional activation of FAM111A. The expression of FAM111A was positively correlated with the m6A level of FAM111A‐DT, and the expression of methyltransferase complex, YTHDC1, and KDM3B in HCC tissues. Depletion of FAM111A largely attenuated the roles of m6A‐modified FAM111A‐DT in HCC. In summary, the m6A‐modified FAM111A‐DT/YTHDC1/KDM3B/FAM111A regulatory axis promoted HCC growth and represented a candidate therapeutic target for HCC.

Publisher

Wiley

Subject

Cancer Research,Oncology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3