Affiliation:
1. School of Computing and Information Sciences Anglia Ruskin University Cambridge UK
Abstract
AbstractVarious neural network architectures are often used to forecast movements in financial markets. Most research in quantitative analytics in finance uses interval financial data as this reduces the raw tick big data, but the averaging can lose key behaviour patterns. This work presents an alternative novel method to reduce raw tick data whilst retaining important information for training, as demonstrated with intraday trading using the EURO/USD currency pair. This time series reduction method focuses on short periods preceding significant movements in financial features and allows the most popular neural network architectures to be applied using less powerful but more readily available computer resources. It is shown that the proposed data preprocessing method for machine learning and other AI‐techniques successfully reduced the size of the selected dataset covering a three‐year period (2018–2021) by 275 times.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献