Per‐step and cumulative load at three common running injury locations: The effect of speed, surface gradient, and cadence

Author:

Van Hooren Bas1ORCID,van Rengs Lars1,Meijer Kenneth1

Affiliation:

1. Department of Nutrition and Movement Sciences NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+ Maastricht The Netherlands

Abstract

AbstractUnderstanding how loading and damage on common running injury locations changes across speeds, surface gradients, and step frequencies may inform training programs and help guide progression/rehabilitation after injuries. However, research investigating tissue loading and damage in running is limited and fragmented across different studies, thereby impairing comparison between conditions and injury locations. This study examined per‐step peak load and impulse, cumulative impulse, and cumulative weighted impulse (hereafter referred to as cumulative damage) on three common injury locations (patellofemoral joint, tibia, and Achilles tendon) across different speeds, surface gradients, and cadences. We also explored how cumulative damage in the different tissues changed across conditions relative to each other. Nineteen runners ran at five speeds (2.78, 3.0, 3.33, 4.0, 5.0 m s−1), and four gradients (−6, −3, +3, +6°), and three cadences (preferred, ±10 steps min−1) each at one speed. Patellofemoral, tibial, and Achilles tendon loading and damage were estimated from kinematic and kinetic data and compared between conditions using a linear mixed model. Increases in running speed increased patellofemoral cumulative damage, with nonsignificant increases for the tibia and Achilles tendon. Increases in cadence reduced damage to all tissues. Uphill running increased tibial and Achilles tendon, but decreased patellofemoral damage, while downhill running showed the reverse pattern. Per‐step and cumulative loading, and cumulative loading and cumulative damage indices diverged across conditions. Moreover, changes in running speed, surface gradient, and step frequency lead to disproportional changes in relative cumulative damage on different structures. Methodological and practical implications for researchers and practitioners are discussed.

Funder

Eurostars

Publisher

Wiley

Subject

Physical Therapy, Sports Therapy and Rehabilitation,Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3