Consciousness, Exascale Computational Power, Probabilistic Outcomes, and Energetic Efficiency

Author:

Stoll Elizabeth A.1

Affiliation:

1. Western Institute for Advanced Study, Denver, CO

Abstract

AbstractA central problem in the cognitive sciences is identifying the link between consciousness and neural computation. The key features of consciousness—including the emergence of representative information content and the initiation of volitional action—are correlated with neural activity in the cerebral cortex, but not computational processes in spinal reflex circuits or classical computing architecture. To take a new approach toward considering the problem of consciousness, it may be worth re‐examining some outstanding puzzles in neuroscience, focusing on differences between the cerebral cortex and spinal reflex circuits. First, the mammalian cerebral cortex exhibits exascale computational power, a feature that is not strictly correlated with the number of binary computational units; second, individual computational units engage in noisy coding, allowing random electrical events to gate signaling outcomes; third, this noisy coding results in the synchronous firing of statistically random populations of cells across the neural network, at a range of nested frequencies; fourth, the system grows into a more ordered state over time, as it encodes the predictive value gained through observation; and finally, the cerebral cortex is extraordinarily energy efficient, with very little free energy lost to entropy during the work of information processing. Here, I argue that each of these five key features suggest the mammalian brain engages in probabilistic computation. Indeed, by modeling the physical mechanisms of probabilistic computation, we may find a better way to explain the unique emergent features arising from cortical neural networks.

Publisher

Wiley

Subject

Artificial Intelligence,Cognitive Neuroscience,Experimental and Cognitive Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3