Developing seed‐ and shoot‐based restoration approaches for the seagrass, Zostera muelleri

Author:

Tan Yi Mei1ORCID,Coleman Rhys A.2,Biro Peter A.1,Dalby Oliver1ORCID,Jackson Emma L.3ORCID,Govers Laura L.45ORCID,Heusinkveld Jannes H. T.6,Macreadie Peter I.7,Flindt Mogens R.8,Dewhurst Jack1,Sherman Craig D. H.1

Affiliation:

1. School of Life and Environmental Sciences Deakin University Geelong Victoria Australia

2. Melbourne Water Corporation Applied Research Docklands Victoria Australia

3. Central Queensland University Australia Coastal Marine Ecosystems Research Centre Gladstone Queensland Australia

4. Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen Netherlands

5. Department of Coastal Studies Royal Netherlands Institute for Sea Research (NIOZ) Texel The Netherlands

6. The Fieldwork Company Groningen GV 9721 The Netherlands

7. School of Life and Environmental Sciences Deakin University Burwood Victoria Australia

8. Department of Biology University of Southern Denmark DK‐5230 Odense M Denmark

Abstract

The restoration of seagrass habitats is a relatively young field with several successful restoration attempts highlighting the feasibility of large‐scale restoration. Successful restoration of seagrass habitats requires an understanding of the most appropriate techniques to use for the target species and local conditions of restoration sites, however, there are currently limited studies on Zostera muelleri. Here, we conduct field trials to explore the use of seed‐ and shoot‐based restoration approaches for Z. muelleri in Victoria, Australia. We assessed the feasibility of collecting and germinating seeds in the field for restoration purposes and trialed the success of four shoot‐based transplanting techniques. We found that seed collections for Z. muelleri were highly successful and scalable, with seed collection rates improving from 489 to 1,939 seeds/hour over 2 years. In addition, in situ seedling germination increased from a maximum of 10.80–25.25% over 2 years. In contrast, shoot‐based restoration approaches were more variable, with plants transplanted with their sediment‐intact outperforming all bare‐rooted approaches. Shoot‐based transplanting approaches appear to have more limited application, but may be appropriate for some restoration sites, or used in combination with seeds to achieve the best restoration outcome. Seed‐based approaches have the potential to be viable and scalable for Z. muelleri given that large numbers of seeds can be collected and stored for at least 7 months before successfully germinating in the field. However, further studies are required to overcome the seedling survival bottleneck (approximately 4 months from emergence) and further increase in situ germination rates.

Funder

Deakin University

Holsworth Wildlife Research Endowment

Melbourne Water

Wettenhall Environment Trust

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3