The antifreeze activity and physicochemical properties of Litopenaeus vannamei head autolysate

Author:

Majura Julieth Joram12ORCID,Han Mei12,Ouyang Jijing12,Chen Xiujuan12,Chen Zhongqin1234ORCID,Tan Mingtang1234,Gao Jialong1234,Lin Haisheng1234ORCID,Zheng Huina1234,Cao Wenhong1234

Affiliation:

1. College of Food Science and Technology Guangdong Ocean University Zhanjiang 524088 China

2. Guangdong Provincial Key Laboratory of Aquatic Products Processing and Safety Guangdong Provincial Engineering Technology Research Center of Seafood Zhanjiang 524088 China

3. Guangdong Province Engineering Laboratory for Marine Biological Products Zhanjiang 524088 China

4. Shenzhen Institute of Guangdong Ocean University Shenzhen 518108 China

Abstract

SummaryLitopenaeus vannamei heads were autolysed at a constant temperature of 50 °C, pH 7.0 for a maximum duration of 5 h, and the antifreeze activity and physicochemical properties of the head autolysates were determined. Thermal hysteresis (TH) was used as an index for determining the antifreeze activity of the shrimp head autolysates. The highest thermal hysteresis activity was 1.82 °C which was measured in the 5 h‐shrimp head autolysate. The highest negative zeta potential value (−41.06 ± 2.08 mV) and surface hydrophobicity (295.575 ± 9.7819) were in the 5 and 1.5 h autolysate groups, respectively. Generally, <2000 Da components accounted for over 85% of the total molecular weight in all shrimp head autolysate groups. Pearson correlation analysis was used to investigate how physicochemical properties influenced the thermal hysteresis index. Although at varying degrees, the analysis confirmed that a positive correlation existed between TH activity and molecular weight, hydrophobic amino acid content, and surface hydrophobicity. A negative correlation existed between TH activity and zeta potential, and hydrophilic amino acids. The findings of our study suggest that Litopenaeus vannamei head autolysate has a potential antifreeze effect and that the physicochemical properties influence its thermal hysteresis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3