Exploring phosphorus starvation tolerance in aus (Oryza sativa L.) rice: An analysis of stress tolerance attributes and understanding the effect of PSTOL1 gene

Author:

Sar Puranjoy1,Aiswarya Vilangapurathu S.12,Basha Firos T. M.12,Deo Rachna3,Verma Bibhash Chandra1,Bhaduri Debarati4,Chakraborty Koushik5,Ngangkham Umakanta6,Banerjee Amrita1,Kumar Jitendra1,Mandal Nimai Prasad1,Roy Somnath1ORCID

Affiliation:

1. Central Rainfed Upland Rice Research Station ICAR‐National Rice Research Institute Hazaribag India

2. ICAR‐Indian Agricultural Research Institute‐Jharkhand Hazaribag India

3. Department of Bioengineering and Biotechnology Birla Institute of Technology Ranchi India

4. Crop Production Division ICAR‐National Rice Research Institute Cuttack India

5. Crop Physiology and Biochemistry Division ICAR‐National Rice Research Institute Cuttack India

6. ICAR Research Complex for NEH Region Manipur Center Imphal India

Abstract

AbstractThe limited availability of Phosphorus (P) in the soil poses a significant challenge to of rice productivity in rainfed tropical regions. There has been a constant demand of diverse donors for enhancing tolerance to P‐deficient soils. In this study, we evaluated 181 aus rice accessions of the 3000 Rice Genome Project (3 K‐RGP) for grain yield and six other agronomical traits under control (~20 mg kg−1 available P) and low‐P (8–10 mg kg−1 available P) field trials. The objectives were to assess the level of low‐P tolerance in the aus germplasm and select stable high‐yielding accessions using stress tolerance attributes. We also surveyed the presence of PSTOL1 gene and Pup1 polymorphisms to find the effect of PSTOL1 as well as t Pup1 haplotypes on low‐P tolerance. Principal component analysis (PCA) using five stress tolerance attributes revealed that attributes like mean productivity (MP) and stress tolerance index (STI) are useful for selecting high‐yielding accessions with stable yield under stress and control conditions. Notably, accessions like Kalabokari, Devarasi, ARC 12021, Jasure Aus, ARC 7336 and ARC 12101 had higher level of tolerance than the check varieties Vandana and Sahbhagi Dhan. Majority of aus accessions carried the PSTOL1 gene (73%) and had the tolerant haplotype of Pup1 (65%) like the tolerant checks. Although, at large, the PSTOL1‐positive accessions were more vigorous, and high yielding under low‐P, there were a few PSTOL1‐negative aus accessions showing higher level of tolerance. The findings suggest that non‐PSTOL1 type tolerance exists in aus rice which needs to be substantiated through further studies.

Funder

ICAR - National Agricultural Science Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3