Purification and Characterization of a Soluble and a Particulate Glutamate Dehydrogenase from Rat Brain

Author:

Colon Arlene D.,Plaitakis Andreas,Perakis Antonis,Berl Soll,Clarke Donald D.

Abstract

Abstract:Glutamate dehydrogenase (GDH) activity was determined in high‐speed fractions (100,000 g for 60 min) obtained from whole rat brain homogenates after removal of a low‐speed pellet (480gfor 10 min). Approximately 60% of the high‐speed GDH activity was particulate (associated with membrane) and the remaining was soluble (probably of mitochondrial matrix origin). Most of the particulate GDH activity resisted extraction by several commonly used detergents, high concentration of salt, and sonication; however, it was largely extractable with the cationic detergent cetyltrimethylammonium bromide (CTAB) in hypotonic buffer solution. The two GDH activities were purified using a combination of hydrophobic interaction, ion exchange, and hydroxyapatite chromatography. Throughout these purification steps the two activities showed similar behavior. Kinetic studies indicated similarKmvalues for the two GDH fractions for the substratesμ‐ketoglutarate, ammonia, and glutamate; however, there were small but significant differences inKmvalues for NADH and NADPH. Although the allosteric stimulation by ADP and L‐leucine and inhibition by diethylstilbestrol was comparable, the two GDH components differed significantly in their susceptibility to GTP inhibition in the presence of 1 mMADP, with apparentKivalues of 18.5 and 9.0 μMGTP for the soluble and particulate fractions, respectively. The HIll plot coefficient, binding constant, and cooperativity index for the GTP inhibition were also significantly different, indicating that the two GDH activities differ in their allosteric sites. In addition, enzyme activities of the two purified proteins exhibited a significant difference in thermal stability when inactivated at 45°C and pH 7.4 in 50 mMphosphate buffer.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3