New interaction model for vertical dynamic response of pipe piles considering soil plug effect

Author:

Wu Wenbing123,El Naggar M. Hesham2,Abdlrahem Maged2,Mei Guoxiong3,Wang Kuihua4

Affiliation:

1. Engineering Research Centre of Rock–Soil Drilling & Excavation and Protection, Ministry of Education, China University of Geosciences, Wuhan, Hubei 430074, China.

2. Geotechnical Research Centre, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada.

3. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 530004, China.

4. Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Abstract

A soil–pile interaction model is developed to better represent the actual behavior of pipe piles undergoing dynamic testing. To correctly investigate the dynamic interaction mechanism of the pipe piles, the developed model introduces an additional mass to account for the soil plug. The governing equations of motion for the soil–pile system subjected to small deformations and strains are established considering plane strain conditions for the soil and one-dimensional wave propagation in the pile. The analytical solution of the vertical dynamic response of the pipe pile in the frequency domain is then obtained by employing a Laplace transform and transfer function technique. The corresponding quasi-analytical solution in the time domain for the pipe pile subjected to a vertical semi-sinusoidal exciting force is subsequently derived by means of a Fourier transform. A parameter sensitivity analysis of the additional mass model is carried out to determine the approximate range of the parameter values. Utilizing the developed solution, a parametric study is performed to illustrate the influence of the properties of the soil–pile system on the vertical dynamic response of the pipe pile. Finally, the validity of the additional mass model is validated by conducting a set of model tests, based on which the concept of “apparent wave velocity of pipe pile” (AWVPP) is also proposed.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3