Soil–pile separation effect on the performance of a pile group under static and dynamic lateral loads

Author:

Hussien Mahmoud N.123,Tobita Tetsuo123,Iai Susumu123,Rollins Kyle M.123

Affiliation:

1. Department of Civil and Earth Resources Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto, 615-8540, Japan.

2. Disaster Prevention Research Institute, Kyoto University, Gokasho, Uji, Kyoto, 611–0011, Japan.

3. Department of Civil and Environmental Engineering, Brigham Young University, 368 CB, Provo, UT 84602, USA.

Abstract

The effect of soil–pile separation is studied with respect to the performance of a laterally loaded pile group. Full-scale tests, which consist of a combination of a single and a 3 × 5 group pile under static and dynamic lateral loads, present a unique opportunity and allow a rigorous study without arbitrary parameter back-fitting. The coupled soil–pile system is idealized through two-dimensional finite elements with soil models idealized by a hyperbolic-type multiple shear mechanism. Nonlinear spring elements are used to idealize the soil–pile interaction through a hysteretic nonlinear load–displacement relationship. Joint elements with a separation–contact mechanism are used to idealize the separation effect at the soil–pile interface. Ignoring soil–pile separation in static tests overestimates the ultimate lateral load–carrying capacity by 43% for a single pile and 73% for the trailing pile in a closely spaced pile group. Moreover, neglecting soil–pile separation in dynamic tests overestimates the total group load–deflection curve in both the loading and unloading phases.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3