ATP-binding cassette (ABC) transporter proteins, multidrug resistance, and novel flavonoid dimers as potent, nontoxic, and selective inhibitors

Author:

Chow Larry M.C.1,Chan Tak Hang12

Affiliation:

1. Department of Applied Biology and Chemical Technology and State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong SAR, China.

2. Department of Chemistry, McGill University, Montreal, QC H3A 2K6, Canada.

Abstract

Multidrug resistance (MDR) is often a major impediment to successful chemotherapy in the treatment of cancer. A common mechanism for MDR is the overexpression of an active ATP-binding cassette (ABC) transporter protein, P-glycoprotein (P-gp/ABCB1, also known as MDR1), multidrug resistance protein 1 (MRP1/ABCC1), or breast cancer resistant protein (BCRP/ABCG2), on the plasma membrane of cancer cells. These transporters can pump many structurally diverse anticancer drugs out of the cancer cells and render these drugs ineffective at a therapeutic dosage, i.e., multidrug resistance. Coadministration of a potent ABC transporter inhibitor with an anticancer drug has been evaluated in several clinical trials to overcome MDR but has led to a disappointing outcome. By taking advantage of the pseudo-dimeric structure of ABC transporters, we demonstrated that some flavonoid dimers, using polyvalent interactions, can be potent inhibitors of ABC transporters. Selective inhibition of the three different transporters with flavonoid dimers can be achieved by placing the two flavonoid moieties at an optimal distance apart specific for each transporter. In addition to being potent and selective inhibitors of the transporters, flavonoid dimers are found to be nontoxic to normal cells at their corresponding effective concentrations. The in vivo efficacy of flavonoid dimers was demonstrated. Further investigation of these flavonoid dimers as clinical candidates to overcome MDR in cancer chemotherapy is warranted.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3