Zirconium oxide nanoparticles coated on sepiolite by sol–gel process — Their application as a solvent-free catalyst for condensation reactions

Author:

Letaief Sadok1,Liu Yun1,Detellier Christian1

Affiliation:

1. Centre for Catalysis Research and Innovation and Department of Chemistry, University of Ottawa, 10 Marie Curie, Ottawa, ON K1N 6N5, Canada.

Abstract

An inorganic nanocomposite made of zirconia nanoparticles coated on the external surfaces of the fibrous clay mineral sepiolite was prepared by using the sol–gel process under soft conditions using zirconium(IV) propoxide in 1-propanol as the precursor. The resulting materials were characterized by X-ray diffraction (XRD), thermal gravimetric analyses (TGA) and differential thermal analyses (DTA), microporosimetry, 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR), and high-resolution transmission electron microscopy (HR-TEM). The organic material from the precursor was fully removed after calcination at 450 °C, concurrently with the crystallization of the cubic phase of zirconium oxide. The coordinated water molecules of sepiolite were fully removed and its symmetrical layered structure was folded after calcination at 650 °C, as observed by XRD and 29Si cross-polarization (CP) / MAS NMR. The arrangement of the nanoparticles of zirconium oxide on the sepiolite external surfaces maintains a fibrous morphology for the nanocomposite. This material was applied as a catalyst for the Knoevenagel condensation reaction of benzaldehyde and malononitrile under solvent-free conditions. Strongly improved yields of reaction, attributed to larger catalytically active surfaces, were obtained compared with either the sepiolite clay mineral or the zirconium oxide tested individually.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3