Environmental, anthropogenic, and dietary influences on fine-scale movement patterns of Atlantic salmon through challenging waters

Author:

Harbicht Andrew B.1,Castro-Santos Theodore2,Gorsky Dimitry3,Hand David M.4,Fraser Dylan J.1,Ardren William R.5

Affiliation:

1. Concordia University, Montréal, Que., Canada.

2. US Geological Survey, Leetown Science Center – S.O. Conte Anadromous Fish Research Center, Turners Falls, Mass., USA.

3. USFWS, Lower Great Lakes Fish and Wildlife Conservation Office, Basom, N.Y., USA.

4. USFWS, Columbia River Fisheries Program Office, Vancouver, Wash., USA.

5. USFWS, Lake Champlain Fish and Wildlife Resources Office, Essex Junction, Vt., USA.

Abstract

Partial barriers to migration can affect migratory fish population dynamics and be influenced by many biotic, abiotic, and anthropogenic factors, including nutritional deficiencies. We investigated how such variables (including a thiamine deficiency) impact fine-scale movement of landlocked Atlantic salmon (Salmo salar) by treating returning spawners with thiamine and observing their attempts to climb a human-altered, high velocity stretch of river using fine-scale radio telemetry. Multiple re-entries into a river section, along with water temperature, strongly influenced movement rates. High or increasing discharge encouraged downstream movement; males abandoned migratory attempts at a higher rate than females. Although thiamine-injected salmon exhibited greater migratory duration, this did not produce a measurable improvement in passage performance, possibly due to the difficulty associated with this section of river — among 24 tagged salmon staging 10.9 attempts each and lasting 1.5 days per attempt on average, only three traversed the entire reach. This study provides new insights into how biotic and abiotic variables affect fish movement, while suggesting limits to the potential for human intervention (thiamine injections) to assist passage through partial migratory barriers.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3