Design and synthesis of some biologically interesting natural and unnatural products based on organosulfur and selenium chemistry

Author:

Back Thomas G.1

Affiliation:

1. Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada (e-mail: tgback@ucalgary.ca).

Abstract

Organosulfur and selenium chemistry has provided fertile ground for the discovery of novel synthetic methodology and for the design of bioactive molecules with potential therapeutic applications. Thus, acetylenic sulfones have been employed in novel strategies for the synthesis of nitrogen heterocycles, including several biologically active alkaloids. The conjugate addition of nitrogen nucleophiles containing ester or chloroalkyl substituents to acetylenic sulfones was followed by base-mediated intramolecular alkylation or acylation to afford variously substituted piperidines, pyrrolizidines, indolizidines, quinolizidines, decahydroquinolines, and 4-quinolones. The products include the dendrobatid alkaloids (–)-pumiliotoxin C, indolizidines (–)-167B, 207A, 209B, and 209D, as well as (–)-(ent)-julifloridine, (–)-lasubine II, myrtine, and two recently discovered alkaloids from the medicinal plant Ruta chalepensis , which had not been previously synthesized. Acetylenic sulfones were also incorporated on solid supports and employed in the types of cyclizations mentioned above, as well as for Diels–Alder reactions and a large variety of 1,3-dipolar cycloadditions. Conjugate additions of tertiary cyclic α-vinyl amines to acetylenic sulfones generated zwitterions that underwent exceptionally facile formal aza-Cope rearrangements to afford ring-expanded macrocyclic amines. An iterative version was developed and used in the synthesis of motuporamine A and B. With respect to organoselenium chemistry, two classes of compounds are described that function as novel mimetics of the selenoenzyme glutathione peroxidase (GPx), which protects cells from oxidative stress caused by the formation of peroxides during aerobic metabolism. They include cyclic seleninates and spirodioxyselenuranes, both of which efficiently catalyze the reduction of peroxides with thiols and are of potential value in the mitigation of oxidative stress. Their aromatic derivatives are generally less effective catalysts, but substituent effects can be used to modulate their activities. The mechanism of their catalytic cycles has been elucidated and Hammett plots indicate that the oxidation of Se(II) to Se(IV) is the rate-determining step for both classes. A methoxy-substituted aromatic spirodioxyselenurane provided the fastest rate for a small-molecule selenium compound that we have observed to date for the reduction of hydrogen peroxide with benzyl thiol.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference114 articles.

1. (a) For general reviews of sulfone chemistry, see: Patai, S.; Rappoport, Z.; Stirling, C., Eds. The Chemistry of Sulphones and Sulphoxides; Wiley: Chichester, 1988;

2. (b) Simpkins, N. S. Sulphones in Organic Synthesis; Pergamon Press: Oxford, 1993;

3. Chemical Chameleons. Organosulfones as Synthetic Building Blocks

4. The chemistry of acetylenic and allenic sulfones

5. The chemistry of vinyl sulphones

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3