Author:
Lechleitner R. A.,Phillips J. E.
Abstract
The rectum, the main reabsorptive site in the locust excretory system, actively transports Cl−. This Cl− absorption is electrogenie, not dependent on Na+or [Formula: see text] and insensitive to inhibitors of NaCl cotransport or [Formula: see text] exchange. To determine if active Cl− transport across rectal epithelia might be due to an anion-stimulated ATPase, a microsomal fraction was obtained by differential centrifugation. Microsomal ATPase activity was stimulated in the following sequence: sulphite > bicarbonate > chloride. Maximal ATPase activity was obtained at 25 mM [Formula: see text] or 25 mM Cl−. Thiocyanate (10 mM) inhibited 90% of the anion-stimulated ATPase activity. The microsomal fraction was enriched in the plasma membrane markers, leucine aminopeptidase, alkaline phosphatase, 5′-nucleotidase, and γ-glutamyItranspeptidase, and had little contamination of the mitochondrial enzymes, succinate cytochrome c reductase and cytochrome oxidase. Na,K-ATPase was enriched in the mitochondrial fraction. Microscopic examination confirmed that basolateral membranes were associated with mitochondria following differential centrifugation, while the microsomal fraction contained little mitochondrial contamination. These results indicate the presence of an anion-stimulated ATPase activity that could be responsible for active Cl− transport across locust recta.
Publisher
Canadian Science Publishing
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献