Quasi-cycles in crappie populations are forced by interactions among population characteristics and environment

Author:

Allen Micheal S,Miranda Leandro E

Abstract

Crappie (Pomoxis spp.) populations have been characterized as cyclic, with strong year-classes recurring at 2- to 4-year intervals. We evaluated the potential for cyclic trends in crappie populations using a population model that included a density-dependent stock recruitment function and random environmental variation. Slow, medium, and fast growth were simulated over 100 years. The model predicted highly variable recruitment that was strongly influenced by environmental fluctuation at low and intermediate stock densities. At high stock density, recruitment was low, even if environmental conditions were favorable. Significant quasi-cycles occurred, but they were not sustained throughout the time series due to random environmental fluctuation. Quasi-cycles occurred because intermediate stock density and favorable environmental conditions occasionally combined to produce a very strong year-class that greatly increased stock density in the following 1–3 years and produced low recruitment, even if environmental conditions were favorable. Empirical data from 32 years of sampling age-0 crappies at Ross Barnett Reservoir showed trends similar to the simulated fluctuations. We conclude that crappie populations likely do not exhibit true cycles but may show quasi-cycles as a result of the interaction between random fluctuations in environment and density-dependent mechanisms. The frequency of such quasi-cycles may be enhanced by rapid growth and high exploitation.

Publisher

Canadian Science Publishing

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3