Gold nanoparticle-functionalized niobium oxide perovskites as photocatalysts for visible light-induced aromatic alcohol oxidations

Author:

Chassé Melissa12,Hallett-Tapley Geniece L.2

Affiliation:

1. Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada.

2. Department of Chemistry, St. Francis Xavier University, P.O. Box 5000, Antigonish, NS B2G 2W5, Canada.

Abstract

Spherical gold nanoparticles have been supported onto the surface of potassium niobium oxide perovskites, an underdeveloped class of semiconductor in photocatalytic organic transformations. The nanoparticle dopants of 9.5 nm in diameter and surface plasmon absorption at 530 nm are examined as possible visible light induced catalysts using alcohol photooxidation as the probe reaction. The nanomaterial-induced photooxidation of a series of aromatic alcohols is examined, in the absence of solvent, as a function of base, H2O2, and catalyst concentrations, as well as using multiple visible light sources. This experimental methodology affords extremely selective photooxidation to the carbonyl products (>99%) in as little as 2 h. Using the results obtained from the substitution of the aromatic alcohol, the proposed photocatalytic mechanism is suggested to rely heavily on plasmon-initiated electron transfer from the gold nanoparticle surface to the potassium niobium oxide perovskite and subsequent reductive decomposition of H2O2. This photodegradation step is proposed to favor the formation of ketyl radical species, a key intermediate in the visible light induced mechanism that undergoes both an electron and proton transfer to facilitate formation of the final, carbonyl products. Furthermore, the gold nanoparticle – potassium niobium oxide catalyst exhibits moderate reusability, highly desired in the realm of heterogeneous catalysis.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3