Design of sustainable energy harvesters using a 3D car suspension system model and half-width speed bump

Author:

Chiu Min-Chie1ORCID,Karkoub Mansour2,Her Ming-Guo1

Affiliation:

1. Department of Mechanical and Materials Engineering, Tatung University, Taipei, 10452, ROC, Taiwan

2. Department of Mechanical Engineering, Lamar University, Beaumont, TX 77710, USA

Abstract

This study aims to not only design a vibration energy harvester integrated in a three-dimensional (3D) multi-particle system but also investigate the longitudinal and lateral body sway and the effect of front and back wheel interlocking caused by the eccentric loading of the vehicle. Using multidimensional vehicle suspension system vibration modes for analysis, this study evaluates the impact of lateral and longitudinal eccentricity on the displacement of the four-suspension system wheel axes. In addition, this study discusses the effect of discontinuous half-width sinusoidal speed bump on power generation and maximum power generation capacity under good ride comfort conditions. To maximize the efficient electrical power from the car's suspension system through the use of energy harvesters, we have employed the simulated annealing algorithm, a robust global optimization technique. The objective function chosen for this optimization is the root-mean-square (RMS) electrical power, represented as WTT(RMS). In addition to this, we have considered the comfort experienced by passengers, incorporating the ride comfort efficiency into the objective function during the optimization process. As a result of this optimization, a 3D car model equipped with four energy harvesters has been fine-tuned to achieve a significant increase in induced electrical power, ultimately reaching an impressive 0.2 W.

Funder

Ministry of Science and Technology

MOST

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3