Reaction mechanism of catalytic gasification by calcium-based catalysts and oxidized coal residues in coalfield fire zones

Author:

Chen Liangzhou12ORCID,Lu Wei1,Qi Xuyao2

Affiliation:

1. College of Safety Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China

2. Key Laboratory of Gas and Fire Control for Coal Mines (China University of Mining and Technology), Ministry of Education, Xuzhou 221116, China

Abstract

Fires originating from coal spontaneous combustion within coalfields result not only in substantial coal resource depletion but also producing residual low-activity pyrolysis coal chars exhibiting varying degrees of oxidation. These chars develop progressively through successive heat penetration at the fire front and post-fire extinguishment phases. This paper focuses on the alkaline earth metal-activated catalytic gasification of residual oxidized coal in fire zones, constructs a carbon-based model of oxidized coal in fire zones. The results show that the reaction active sites of the oxidized coal carbon matrix model are mainly concentrated on the carbon atoms at the end of the aromatic ring. During catalytic gasification, the calcium-based catalyst engages with these active sites, forming a preliminary catalyst. The transformation of oxidized coal into CO primarily occurs through two distinct routes. Calcium attaches to the surface of the oxidized coal’s carbon-based structure, establishing active sites. Acting as a facilitator, it aids the movement of CO2 to the carbon-based surface, leading to its further breakdown into CO. The catalytic species containing calcium persistently amalgamates with active sites on coal coke surface, fostering the release of additional CO. Moreover, these catalytic species with calcium also bind CO2 and unite with active coal coke sites, generating carbon–oxygen complexes on the surface. These complexes are thermally unstable and decompose, yielding CO and initiating the formation of fresh active sites on the coal coke surface. Consequently, they interact further with calcium-based catalytic species, culminating in the creation of catalyst precursors, which drive a recurrent catalytic reaction process.

Funder

The National Key Research and Development Program of China

The National Natural Science Foundation of China

The Fundamental Research Funds for the Central Universities

Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3