High-fat diet differentially regulates metabolic parameters in obesity-resistant S5B/Pl rats and obesity-prone Osborne-Mendel rats

Author:

Allerton Timothy D.1,Primeaux Stefany D.12

Affiliation:

1. Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, 1901 Perdido Street, New Orleans, LA 70112, USA.

2. Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA.

Abstract

The current experiment tested the hypothesis that consumption of a high-fat diet (HFD) would differentially affect metabolic parameters in obesity-prone Osborne-Mendel (OM) and obesity-resistant S5B/Pl (S5B) rats. In OM rats consuming a HFD, an increase in HFD intake, body mass, and percent fat mass, and a HFD-induced decrease in metabolic rate and energy expenditure were demonstrated. In S5B rats consuming a HFD, no change in percent body fat or HFD intake was demonstrated and HFD increased metabolic rate and energy expenditure. To assess whether HFD differentially altered skeletal muscle markers of metabolism in OM and S5B rats, the expression of the transporters, CD36 and GLUT4, and the energy sensors, AMPK and PPARγ, in the gastrocnemius muscle was measured. Oxidation and lipid accumulation in the gastrocnemius muscle was histologically determined. Consumption of a HFD decreased phosphorylated AMPK and PPARγ expression in the skeletal muscle of obesity-prone OM rats. Lipid accumulation in skeletal muscle was significantly higher in OM rats fed a HFD. Overall, these data suggest that the differential response to HFD on metabolic rate, energy expenditure, and phosphorylated AMPK and PPARγ in OM and S5B rats, may partially account for differences in the susceptibility to develop obesity.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3