Isolation, characterisation, and expression profiling of DXS and DXR genes in Atractylodes lancea

Author:

Xu Rui1,Wu Junxian1,Zhang Yazhong2,Jiang Lu1,Yao Jinchen1,Zha Liangping13ORCID,Xie Jin4

Affiliation:

1. College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China

2. Anhui Institute for Food and Drug Control, Hefei 230051, China

3. Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, China

4. School of Pharmacy, Anhui Medical University, Hefei 230032, China

Abstract

1-Deoxy-d-xylulose-5-phosphate synthase and 1-deoxy-d-xylulose-5-phosphate reductoismerase are considered two key enzymes in the 2- C-methyl-d-erythritol-4-phosphate pathway of terpenoid biosynthesis and are related to the synthesis and accumulation of sesquiterpenoids. We cloned two DXS and DXR genes from Atractylodes lancea and analysed their expression in different tissues and in response to methyl jasmonate (MeJA). Subcellular localisation analysis revealed that the AlDXS and AlDXR1 proteins are located in the chloroplasts and cytoplasm, whereas AlDXR2 is only located in the chloroplasts. pET-AlDXS-28a and pGEX-AlDXR-4T-1 were expressed in Escherichia coli BL21(DE3) and BL21, respectively. Based on the abiotic stress analysis, the growth rate of the recombinant pGEX-AlDXR-4T-1 was higher than that of the control in HCl and NaOH. AlDXS exhibited the highest expression level in rhizomes of A. lancea from Hubei but was highest in leaves from Henan. In contrast, AlDXR showed maximum expression in the leaves of A. lancea from Hubei and Henan. Moreover, DXS and DXR gene expression, enzyme activities, and antioxidant enzyme activities oscillated in response to MeJA, with expression peaks appearing at different time points. Our findings indicated that the characterisation and function of AlDXS and AlDXR could be useful for further elucidating the functions of DXR and DXR genes in A. lancea.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3