The brain in evolution and involution

Author:

Parent André

Abstract

This paper provides an overview of the phylogenetic evolution and structural organization of the basal ganglia. These large subcortical structures that form the core of the cerebral hemispheres directly participate in the control of psychomotor behavior. Neuroanatomical methods combined with transmitter localization procedures were used to study the chemical organization of the forebrain in each major group of vertebrates. The various components of the basal ganglia appear well developed in amniote vertebrates, but remain rudimentary in anamniote vertebrates. For example, a typical substantia nigra composed of numerous dopaminergic neurons that project to the striatum already exists in the brain of reptiles. Other studies in mammals show that glutamatergic cortical inputs establish distinct functional territories within the basal ganglia, and that neurons in each of these territories act upon other brain neuronal systems principally via a GABAergic disinhibitory output mechanism. The functional status of the various basal ganglia chemospecific systems was examined in animal models of neurodegenerative diseases, as well as in postmortem material from Parkinson's and Huntington's disease patients. The neurodegenerative processes at play in such conditions specifically target the most phylogenetically ancient components of the brain, including the substantia nigra and the striatum, and the marked involution of these brain structures is accompanied by severe motor and cognitive deficits. Studies of neural mechanisms involved in these akinetic and hyperkinetic disorders have led to a complete reevaluation of the current model of the functional organization of the basal ganglia in both health and disease. Key words: brain phylogeny, basal ganglia, neurotransmitters, neurodegenerative disorders.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3