Use of mutants to establish (+)-scytalone as an intermediate in melanin biosynthesis by Verticillium dahliae

Author:

Bell A. A.,Puhalla J. E.,Tolmsoff W. J.,Stipanovic R. D.

Abstract

Melanin biosynthesis in Verticillium dahliae Kleb. was studied with mutants deficient for normal black melanin or for production of microsclerotia. Seven genetically different mutants had apparent blocks in melanin biosynthesis. Four mutants (brm-I to -4) produced brown microsclerotia and extruded pigments into media; three (alm-1 to -3) produced albino microsclerotia. Other mutants produced no microsclerotia (nms) or had greatly reduced numbers of microsclerotia (rms). Mutation alm-1 was due to a single recessive gene; the other melanin-deficient characters were recessive but their genetic bases were not determined. Cultures of the brown mutants brm-1 and -3 extruded and accumulated a metabolite that blackened the albino microsclerotia of alm-1 to -3. The metabolite was identified as (+)-scytalone (3, 4-dihydro-3, 6, 8-trihydroxy-1(2H)naphthalenone). Pigment formed by alm-1 microsclerotia from (+)-scytalone had chemical and physical properties identical with those of melanin in the wild-type fungus. (+)-Scytalone was produced and converted to melanin by microsclerotia but not by conidia or hyphae. Conversion of (+)-scytalone to melanin appeared to involve two or more enzymes and probably involved conversions to 1, 3, 8-trihydroxynaphthalene and 1, 8-dihydroxynaphthalene. Albino mutants of Thielaviopsis basicola, Drechslera sorokiniana, Pleospora infectoria (Alternaria), Ulocladium sp., and Curvularia sp. also converted scytalone to pigments indistinguishable from the melanins found in their respective wild types. Scytalone melanin may be common in fungi with dark brown or black pigments.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3