Decomposition of needle litter and its organic chemical components: theory and field experiments. Long-term decomposition in a Scots pine forest. III

Author:

Berg Björn,Ågren Göran I.

Abstract

Scots pine needles were collected and field incubations were begun in the autumn of 6 consecutive years. The incubated needles were sampled three times a year and analysed for mass loss and chemical composition. The longest incubation time obtained was 1825 days. Four series of needles from a nutrition experiment (three levels of nutrient application and one control) sampled at one occasion were followed in the same way for 1448 days. The logarithm of remaining mass versus time of the pooled samples fits a linear regression well (average rate constant = 0.286 year−1, r2 = 0.963, n = 75). A higher resolution shows, however, that the decay rate decreases with time as the chemical composition changes. To better understand the decomposition process we have formulated a mathematical model for the course of mass loss as a system consisting of two fractions, a readily decomposable (labile) one and a refractory one. The mass loss from the two fractions can be direct or mass can be transferred from the refractory to the labile fraction. The model allows us to calculate the variation of the refractory fraction with time (generally there will always be some labile material in the system) and the decrease of the decomposition rate as a function of time or as a function of the concentration of the refractory fraction. We have found it possible to identify the refractory fraction both as the lignin fraction and as the nonsoluble fraction of the needles. The first identification yields a long transient response, whereas the second gives a system rapidly reaching a steady state. In both cases, the decay of the refractory material results in transfer of material to the labile fraction.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3