Energetics and structural effects in the fragmentation of protonated esters in the gas phase

Author:

Herman Jan A.,Harrison Alex. G.

Abstract

A series of formate (methyl through butyl) and acetate (methyl through pentyl) esters have been protonated in the gas phase by the Brønsted acids H3+, N2H+, CO2H+, N2OH+, and HCO+. Carbonyl oxygen protonation is 87–97 kcal mol−1 exothermic for H3+ and 47–57 kcal mol−1 exothermic for the weakest acid HCO+, permitting a study of the effect of protonation exothermicity on the decomposition modes of the protonated esters. With the exception of protonated methyl formate, three decomposition modes, (a) to (c) are observed.[Formula: see text]Reaction (a) is unimportant for formates; for acetates it is the sole decomposition channel for the methyl ester, but is less important for higher acetates. The dependence of the relative importance of this reaction mode on the protonation exothermicity indicates an activation energy considerably in excess of ΔH0, presumably because the reaction involves a symmetry-forbidden 1,3-H shift for the carbonyl protonated ester. For the higher acetates where the difference in the proton affinities of the carbonyl and ether oxygens is less, acyl ion formation results, in part, from protonation at the ether oxygen. For protonated methyl formate the major fragmentation reaction yields CH3OH2+ + CO; this reaction also appears to have an activation energy considerably in excess of the ΔH0. For the remaining esters either reaction (b) or (c) is the major decomposition mode. The competition between these two channels depends strongly on the protonation exothermicity and the relative activation energies. From the reaction competition we conclude that 1,2-H shifts occur in the case of primary alkyl esters yielding more stable secondary or tertiary alkyl ions. This rearrangement appears to occur after the excess energy has been partitioned between the alkyl ion and the neutral acid since the extent of further fragmentation of the alkyl ion reflects the original structure of the alkyl group.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3