The photosynthetic carbon metabolism of Zea mays and Gomphrena globosa: the location of the CO2 fixation and the carboxyl transfer reactions

Author:

Berry J. A.,Downton W. J. S.,Tregunna E. B.

Abstract

Zea mays and Gomphrena globosa form labeled aspartate and malate (C4-acids) via β-carboxylation of P-enolpyruvate during photosynthesis. Studies of the redistribution of 14C in pulse- and chase-type feedings of 14CO2 indicate that most labeled phosphorylated compounds are formed from the C4-acids. A mechanism involving CO2 as a transitory intermediate is advanced to explain the carboxyl transfer from the C4-acids to 3-phosphoglyceric acid (3-PGA). In this model, CO2 is generated through the oxidative decarboxylation of malic acid by "malic" enzyme, and is refixed by RuDP carboxylase to form 3-PGA. The pattern of labeling of photosynthetic products, the extractable enzyme activities, and the gas exchange properties of these plants appear to be consistent with this proposed sequence of reactions. The location of 14C-labeled compounds was determined by radioautography, and by nonaqueous density gradient separation. Differential grinding was used to study the location of some photosynthetic enzymes. These indicate that CO2 fixation by β-carboxylation occurs in the leaf mesophyll. The carboxyl transfer and the reactions leading to the photosynthesis of starch appear to be confined predominantly to the bundle sheath cells. Rapid transport of C4-acids from the site of CO2 fixation in the mesophyll to the bundle sheath may occur by plasmodesmata.

Publisher

Canadian Science Publishing

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3