Seismic and gravity constraints on the crustal architecture of the Intermontane terranes, central Yukon

Author:

Calvert Andrew J.1,Hayward Nathan2,Vayavur Rajesh1,Colpron Maurice3

Affiliation:

1. Department of Earth Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.

2. Geological Survey of Canada, 1500 – 605 Robson Street, Vancouver, BC V6B 5J3, Canada.

3. Yukon Geological Survey, P.O. Box 2703 (K-14), Whitehorse, YT Y1A 2C6, Canada.

Abstract

In 2004, two seismic reflection lines were shot across the Mesozoic Whitehorse trough and adjacent terranes. Three-dimensional first-arrival tomographic inversion is used to constrain lithology to 800–1200 m depth, and surface structures are extrapolated into the middle crust using the coincident reflection data. In the Yukon–Tanana terrane, the metasedimentary Snowcap assemblage is characterized by velocities of 4.5–5.5 km/s, while in Quesnellia, velocities of 5.0–6.0 km/s occur at 500 m depth, and probably represent igneous rocks of the Tatchun batholith. Across the Whitehorse trough, velocities >4.0 km/s correspond to clastic rocks of the Jurassic Laberge and Triassic Lewes River groups; velocities <4.0 km/s probably present the clastic Jurassic to Cretaceous Tantalus Formation. Several near-surface units with velocities of 2.0–3.0 km/s are identified; some correlate well with volcanic rocks of the Upper Cretaceous Carmacks Group, but others could be attributable to alluvial deposits or faulting. The Big Salmon fault is interpreted to dip southwest, implying that rocks of the Yukon–Tanana terrane extend beneath Quesnellia. Stikinia and Quesnellia underlie up to 5–8 km of Triassic to Early Cretaceous sedimentary strata, and appear to be a single allochthon within an 18–20 km deep synform above the Yukon–Tanana terrane, which we name the Northern Intermontane synform. In general, reflection geometries in the upper crust are complex, but are consistent with large-scale imbricate structures that have been dissected into numerous blocks by displacement along moderately to steeply dipping strike-slip faults, which may be part of a crustal-scale flower structure extending to the base of the crust.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3