Hibiscus sabdariffa(roselle) polyphenol-rich extract averts cardiac functional and structural abnormalities in type 1 diabetic rats

Author:

Mohammed Yusof Nur Liyana1,Zainalabidin Satirah1,Mohd Fauzi Norsyahida2,Budin Siti Balkis1

Affiliation:

1. Programme of Biomedical Science, School of Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.

2. Faculty of Pharmacy, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia.

Abstract

Diabetes mellitus is often associated with cardiac functional and structural alteration, an initial event leading to cardiovascular complications. Roselle (Hibiscus sabdariffa) has been widely proven as an antioxidant and recently has incited research interest for its potential in treating cardiovascular disease. Therefore, this study aimed to determine the cardioprotective effects of H. sabdariffa (roselle) polyphenol-rich extract (HPE) in type-1-induced diabetic rats. Twenty-four male Sprague–Dawley rats were randomized into 4 groups (n = 6/group): nondiabetic, diabetic alone (DM), diabetic supplemented with HPE (DM+HPE), and diabetic supplemented with metformin. Type-1 diabetes was induced with streptozotocin (55 mg/kg intraperitoneally). Rats were forced-fed with HPE (100 mg/kg) and metformin (150 mg/kg) daily for 8 weeks. Results showed that HPE supplementation improved hyperglycemia and dyslipidemia significantly (p < 0.05) in the DM+HPE compared with the DM group. HPE supplementation attenuated cardiac oxidative damage in the DM group, indicated by low malondialdehyde and advanced oxidation protein product. As for the antioxidant status, HPE significantly (p < 0.05) increased glutathione level, as well as catalase and superoxide dismutase 1 and 2 activities. These findings correlate with cardiac function, whereby left ventricle developed pressure in DM+HPE (79.13 ± 3.08 mm Hg) was higher significantly compared with DM (45.84 ± 1.65 mm Hg). Coronary flow of DM+HPE (17.43 ± 0.62 mL/min) was also greater compared with DM (13.02 ± 0.6 mL/min), showing that HPE supplementation improved cardiac contractility and relaxation rate significantly (p < 0.05). Histological analysis showed a marked decrease in cardiomyocyte hypertrophy and fibrosis in DM+HPE compared with the DM group. Ultrastructural changes and impairment of mitochondria induced by diabetes were minimized by HPE supplementation. Collectively, these findings suggest that HPE is a potential cardioprotective agent in a diabetic setting through its hypoglycemic, anti-hyperlipidemia, and antioxidant properties.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3