Linking Archaean climate change with gold metallogeny

Author:

Frimmel Hartwig E.12ORCID

Affiliation:

1. Department of Geodynamics & Geomaterials Research, Bavarian Georesources Centre, Institute of Geography & Geology, University of Würzburg, Würzburg, D-97074, Germany

2. Department of Geological Sciences, University of Cape Town, Rondebosch, 7701, South Africa

Abstract

First large-scale concentration of gold to ore grade in Earth’s crust took place at around 2.9 Ga in quartz-pebble conglomerates, well before endogenous deposits, such as porphyry and epithermal systems or orogenic-type deposits, started to play a significant role from ca. 2.75 Ga onwards. The conglomerate-hosted gold placers, typified by those in the Mesoarchaeaen Witwatersrand Basin in South Africa, are thought to have been sourced from the leaching of background levels of gold in the Archaean continental crust, promoted by deep chemical weathering under a reducing acidic atmosphere. Gold dissolved in meteoric waters was trapped by possibly acidophile microbes, fossil remnants of which are preserved as kerogen layers in the 2.9 Ga lower Central Rand Group of the Witwatersrand Supergroup. Mechanical reworking of the delicate microbial mat-bound gold led to rich gold placers from 2.9 Ga onwards. Well-endowed gold placers older than 2.9 Ga are conspicuously missing, although suitable siliciclastic host rocks, even containing relics of former microbes, are known from continental sediment sequences as old as 3.22 Ga. A review of climate-sensitive rock types and geochemical data on the extent of chemical weathering reveals that the period from 2.96–2.91 Ga was cold, with repeated glaciations as evidenced by glaciogenic diamicite, whereas warmer and (or) wetter climates reigned from 2.90 to 2.78 Ga. In concert with the temporal distribution of placer gold accumulation, the conclusion is reached that chemical weathering rate, dictated by climate, was a key determining factor in the exogenous binding of Au into sedimentary deposits.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3