Grazing and fertilizer, compost or manure application effects on a meadow bromegrass pasture on a thick black chernozem I. Productivity and sustainability

Author:

Baron V.S.1ORCID,Dick A.C.1,Lemke R.2,Greer K.3,Mapfumo Emmanuel4ORCID

Affiliation:

1. Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, AB, T4L 1W1, Canada

2. Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, Saskatchewan S7N 0X2, Canada

3. 804 Central Ave. Saskatoon, SK. S7N 2G6

4. Concordia University of Edmonton. 7128 Ada Blvd, Edmonton, AB, T5B 4E4, Canada

Abstract

Short duration, intensive grazing management with high stocking rates may result in sufficient turn-over of nitrogen (N) to compensate for production-limiting soil-N deficiencies for grass pasture. In central Alberta a 0.5 ha block was seeded to “Fleet” meadow bromegrass ( Bromus riparius Rehmann) in August 2002. Within this block, six fenced (9 m × 30 m) treatments were established in three replicates. They were (1) ungrazed—clip removal, (2) grazed—alone, (3) grazed—fertilizer, (4) grazed—fertilizer-compost, (5) grazed—hog manure, and (6) grazed—alfalfa ( Medicago sativa L.) grass. Measurements were conducted over a 4-year period between 2003 and 2006 and grazing occurred at identical times as vegetative mass permitted. Biomass was harvested before and after grazing for calculation of dry matter (DM) yield and biomass consumed. Sub-samples were used for determination of N concentration and in vitro digestibility. Mean herbage N-yield for grazed treatments was 131% of ungrazed and greatest for grazed-fertilizer and grazed-fertilizer plus compost. Grazed paddocks with no added N produced similar DM yield to those with added N. Estimated nitrogen fixation contributed an annual average of 82 kg ha−1 to herbage-N yield from the alfalfa-grass paddocks. Barley ( Hordeum vulgare L.) silage grown after termination of the grazed pastures produced 72% more herbage DM from grazed paddocks than ungrazed, but no significant ( P < 0.05) differences occurred among amendments.

Publisher

Canadian Science Publishing

Subject

Soil Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3