Affiliation:
1. Department of Materials Science and Engineering, University of Ghana, Accra, Ghana.
Abstract
We examine the morphological instability from planar to non-planar cellular morphology with the maximum entropy production rate (MEPR) principle. An expression that quantifies the MEPR density at the solid–liquid interface (SLI) during direction solidification is presented, which leads to an instability criterion for dilute binary alloys. The instability criterion also affords to theoretically calculate the instability solidification growth velocity. The model considers steady state solidification at close-to and far-from equilibrium conditions.
Publisher
Canadian Science Publishing
Subject
General Physics and Astronomy
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献