The recurring role of site challenges assumptions about regeneration under selection systems in northern hardwoods

Author:

Premer Mike1,Froese Robert E.2

Affiliation:

1. Rayonier, Research, Productivity, and Sustainability, Hoquiam, Washington, United States, ;

2. CDN, 467808, University of Alberta, Edmonton, Alberta, Canada, ;

Abstract

In naturally regenerated managed forests, silvicultural methods leverage timing and intensity of harvesting activities to align with species-specific reproduction mechanisms. With contemporary emphasis on complex stand structure and diverse composition, there is uncertainty in the continued use of timber-oriented management practices in meeting evolving objectives. In the northern hardwood region of North America, selection regeneration systems are assumed to result in homogenization of structure and composition through increasing dominance of Acer saccharum Marsh. Given the coupling of soils and vegetation in northern hardwoods, trends in site conditions that may be more resilient/facilitative to community diversity may be of value to silviculturists. Remote sensing products and inventory records were integrated to assess tree communities across site variables in northern Michigan, USA. Results reveal that composition is stabilized by local landforms and diversity increases with hydrologic catchment area. Time since treatment (0-54 years) appeared negatively correlated with catchment area, suggesting lowlands with high diversity are not managed or harvested infrequently, reflecting equipment access and operational logistics. Broad interpretations of selection regeneration systems may be invalidated by the influence of site conditions not previously accounted for, and results highlight a novel technique to capture the effect of topography on species assemblages.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3