An epigenetic code for DNA damage repair pathways?

Author:

Hassa Paul O,Hottiger Michael O

Abstract

Exposure of living cells to intracellular or external mutagens results in DNA damage. Accumulation of DNA damage can lead to serious consequences because of the deleterious mutation rate resulting in genomic instability, cellular senescence, and cell death. To counteract genotoxic stress, cells have developed several strategies to detect defects in DNA structure. The eukaryotic genomic DNA is packaged through histone and nonhistone proteins into a highly condensed structure termed chromatin. Therefore the cellular enzymatic machineries responsible for DNA replication, recombination, and repair must circumvent this natural barrier in order to gain access to the DNA. Several studies have demonstrated that histone/chromatin modifications such as acetylation, methylation, and phosphorylation play crucial roles in DNA repair processes. This review will summarize the recent data that suggest a regulatory role of the epigenetic code in DNA repair processes. We will mainly focus on different covalent reversible modifications of histones as an initial step in early response to DNA damage and subsequent DNA repair. Special focus on a potential epigenetic histone code for these processes will be given in the last section. We also discuss new technologies and strategies to elucidate the putative epigenetic code for each of the DNA repair processes discussed.Key words: epigenetic code, histone modifications, DNA repair pathways, ChIP, MS/MS, acetylation, methylation, phosphorylation and mono(ADP-ribosyl)ation.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3