Anaerobic metabolism in human skeletal muscle during short-term, intense activity

Author:

Spriet Lawrence L.

Abstract

The ability of human skeletal muscle to provide anaerobically derived ATP during short-term, intense activity is examined. The paper emphasizes the information obtained from direct measurements of substrates, intermediates, and products of the pathways in muscle that provide anaerobically derived ATP. The capacity of muscle to provide ATP via anaerobic pathways is ~370 mmol/kg dry muscle (dm) during dynamic exercise lasting ~3 min. Anaerobic glycolysis provided ~80%, phosphocreatine (PCr) degradation ~16%, and depletion of the ATP store ~4% of the total ATP provided. When the blood flow to the working muscles is reduced or occluded, the anaerobic capacity decreases to ~300 mmol/kg dm. This reduction is due to a lower glycolytic capacity associated with an inability to remove lactate from the muscles. Directly measured maximal rates of anaerobically derived ATP provision from PCr degradation and glycolysis during intense muscular activity are each ~9–10 mmol∙kg−1 dm∙s−1. Evidence suggests that both of these pathways are activated instantaneously at the onset of maximal activity. Spring training does little to the capacity or rates of the pathways, although a 10–20% increase in glycolytic ATP provision has been reported. The only study comparing direct and indirect estimates of the anaerobic capacity in humans suggests that O2 deficit measured at the mouth accurately predicts the anaerobic capacity of a single muscle group and that O2 debt does not. There are many unresolved issues regarding the capacity of the PCr and glycogenolytic–glycolytic systems to provide ATP during short-term intense muscular activity in humans. Considerable effort is now being directed to understanding the in vivo regulation of the regulatory and flux-generating glycogenolytic enzyme, phosphorylase.Key words: glycogenosis, glycolysis, phosphocreatine, ATP, sprinting.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3